23,349 research outputs found

    Differential stiffness effects

    Get PDF
    Differential stiffness as developed in NASTRAN is a linear change in stiffness caused by applied loads. Examples of differential stiffness are the stiffening effects of gravity forces in a pendulum, centrifugal forces in rotor blades and pressure loading of shell structures. In cases wherein this stiffness caused by a load is destabilizing, the differential stiffness concept lends itself to nonlinear structural analysis. Rigid Formats 4 (static analysis with differential stiffness) and 13 (normal modes with differential stiffness) are specifically designed to account for such stiffness changes. How pressure loading may be treated in these rigid formats is clarified. This clarification results from modal correlation of Ground Vibration Test (GVT) results from the empty and pressurized Filament Wound Case (FWC) quarter-scale Space Shuttle solid rocket booster (QSSRB). A sketch of the QSSRB cantilevered to the floor by its external tank attachments is shown

    Thermal and structural assessments of a ceramic wafer seal in hypersonic engines

    Get PDF
    The thermal and structural performances of a ceramic wafer seal in a simulated hypersonic engine environment are numerically assessed. The effects of aerodynamic heating, surface contact conductance between the seal and its adjacent surfaces, flow of purge coolant gases, and leakage of hot engine flow path gases on the seal temperature were investigated from the engine inlet back to the entrance region of the combustion chamber. Finite element structural analyses, coupled with Weibull failure analyses, were performed to determine the structural reliability of the wafer seal

    Life assessment of combustor liner using unified constitutive models

    Get PDF
    Hot section components of gas turbine engines are subject to severe thermomechanical loads during each mission cycle. Inelastic deformation can be induced in localized regions leading to eventual fatigue cracking. Assessment of durability requires reasonably accurate calculation of the structural response at the critical location for crack initiation. In recent years nonlinear finite element computer codes have become available for calculating inelastic structural response under cyclic loading. NASA-Lewis sponsored the development of unified constitutive material models and their implementation in nonlinear finite element computer codes for the structural analysis of hot section components. These unified models were evaluated with regard to their effect on the life prediction of a hot section component. The component considered was a gas turbine engine combustor liner. A typical engine mission cycle was used for the thermal and structural analyses. The analyses were performed on a CRAY computer using the MARC finite element code. The results were compared with laboratory test results, in terms of crack initiation lives

    Blind channel identification based on second-order statistics: a frequency-domain approach

    Get PDF
    In this communication, necessary and sufficient conditions are presented for the unique blind identification of possibly nonminimum phase channels driven by cyclostationary processes. Using a frequency domain formulation, it is first shown that a channel can be identified by the second-order statistics of the observation if and only if the channel transfer function does not have special uniformly spaced zeros. This condition leads to several necessary and sufficient conditions on the observation spectra and the channel impulse response. Based on the frequency-domain formulation, a new identification algorithm is proposed
    corecore